

Space Technology Division

Updated TPS Requirements for Missions to Titan

B. Laub and Y.-K. Chen NASA Ames Research Center Moffett Field, CA 94035, USA presented at

3rd International Planetary Probe Workshop

Anavyssos, Attiki Greece

27 June - 1 July 2005

Acknowledgements

Space Technology Division

- William M. Congdon (Applied Research Assoc.)
 - ◆ TPS sizing analyses for SRAM-14, SRAM-17, and SRAM-20
- Jean-Marc Bouilly and Pierre Jullien (EADS Space)
 - TPS sizing analyses for AQ-60 and Norcoat-Liege
- Work sponsored by:
 - In-Space Propulsion (ISP) Aerocapture project
 - NASA Engineering Safety Center (NESC)

Outline

Space Technology Division

- Background
 - 2002 NASA Systems Analysis Study
 - Candidate TPS Materials
 - TPS Mass Estimates
 - TPS Performance Uncertainties
- Huygens Support
 - UV Materials Testing
 - Shock Layer Radiation Studies
- Updated Aerocapture Analysis
 - Revised Stagnation Point Heating
 - Revised Stagnation Point TPS Requirements
- Summary and Conclusions

Background

Space Technology Division

- NASA Systems Analysis Study for Titan aerocapture mission conducted in 2002
 - Discipline experts from several NASA centers
- 590 kg orbiter delivered to Titan
 - Earth Gravity Assist (EGA)
 - Solar Electric Propulsion (SEP)
 - 5.9 years trip time
 - V_e (inertial) ≈ 6.5 km/s (1000 km)
- Rigid aeroshell
 - Flying at angle-of-attack
 - Lift vector control via bank modulation (only)

Background - aeroshell configuration

Space Technology Division

- $ightharpoonup 70^{\circ}$ half-angle blunt cone; $D_{max} = 3.75$ m
- \rightarrow L/D = 0.25
- \rightarrow M/C_DA = 90 kg/m²

Background - Titan atmosphere

Space Technology Division

- Composition: primarily N₂ with some Ar and CH₄
- ➤ Uncertainty in argon and methane concentrations → uncertainties in density distribution
- Yelle engineering models adopted for analysis (Justus and Duvall)
 - TitanGRAM

Background - aerocapture flight trajectories

Space Technology Division

- Trajectories (Way, Powell et al.) defined for range of atmospheric density models
- Lift vector control through bank modulation
- Limiting trajectories: undershoot (lift up) and overshoot (lift down)

Background - stagnation point heating

Space Technology Division

Convective heating calculated with DPLR¹ and LAURA

- Non-equilibrium radiation with NEQAIR² and RADICAL
- ➤ Undershoot trajectories → largest heating rates
- ➤ Overshoot trajectories → largest heat *loads*
- Convective heating relatively insensitive to methane concentration
- Radiative heating proportional to methane concentration
 - Due to CN formed in the shock layer

1. Wright, M.J., G.V. Candler, and D. Bose, "Data-Parallel Line Relaxation Method for the Navier-Stokes Equations," AIAA Journal, Vol. 36, No. 9, pp. 1603-1609, Sep. 1998.

^{2.} Whiting, E.E., Park, C., Liu, Y., Amold, J.O., and Paterson, J.A., "NEQAIR96, Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual," NASA RP-1389, Dec. 1996

Background - stagnation point heat load

Space Technology Division

Atmosphere model/ aerocapture trajectory	Convective heat load (J/cm²)	Radiative heat load (J/cm²)
Minimum atm / Lift up	5,200	15,769
Nominal atm / Lift up	5,500	10,021
Nominal atm / Lift down	7,500	12,090
Maximum atm / Lift down	7,700	8,393

- Convective heat load larger for overshoot (lift down) trajectories
 - Longer flight trajectory
- Radiative heat load varies with methane concentration in the atmosphere
- Radiative heat load (for same atmospheric model) larger for overshoot (lift down) trajectories
 - Longer flight trajectory

Background - candidate TPS materials

Space Technology Division

Material	Density (g/cm ³)	Description	
Shuttle tiles (NASA)	0.192-0.352	Low-density glass-based ceramic tile with glass-based coating	
SLA-561V (LMA)	0.256	Low-density cork silicone composite in Flexcore honeycomb (forebody TPS on Mars Viking, Mars Pathfinder and Mars Exploration Rover landers)	
SRAM14 (ARA)	0.224	Low-density cork silicone composite fabricated with strip-collar bonding technique	
SRAM17 (ARA)	0.272	Low-density cork silicone composite fabricated with strip-collar bonding technique	
SRAM20 (ARA)	0.320	Low-moderate density cork silicone composite fabricated with strip-collar bonding technique	
SIRCA (NASA)	0.192-0.352	Low-density ceramic tile impregnated with silicone resin	
PICA (NASA)	0.256	Low-density carbon fiberform partially filled with phenolic resin (forebody TPS on Stardust spacecraft)	
PhenCarb20 (ARA)	0.320	Low-moderate density phenolic composite fabricated with strip-collar bonding technique	
Acusil I (ITT)	0.480	Moderate density filled silicone in Flexcore honeycomb	
TUFROC (NASA)	Varies with layer sizing	Multilayer composite: carbon fiberform/AETB tile with high temperature, high emissivity surface treatment	
Genesis Concept (LMA)	Varies with layer sizing	Carbon-carbon facesheet over carbon fiberform insulator (forebody TPS on Genesis spacecraft)	
Carbon phenolic	1.45	Fully dense tape-wrapped or chopped molded heritage material (forebody TPS on Galileo and Pioneer Venus entry probes)	

Background - TPS mass estimates *

Space Technology Division

Candidate TPS Material	Maximum atmosphere - Lift Down Convective Heat Load = 7,700 J/cm ² Radiative Heat Load = 8,393 J/cm ²		Nominal atmosphere – Lift Down Convective Heat Load = 7,500 J/cm ² Radiative Heat Load = 12,090 J/cm ²	
	Thickness (cm)	Areal weight (g/cm²)	Thickness (cm)	Areal weight (g/cm²)
SLA-561V	2.44	0.626	2.43	0.622
SRAM 14	1.57	0.353	1.55	0.348
SRAM 17	1.93	0.526	1.93	0.526
SRAM 20	2.08	0.667	2.08	0.667
PhenCarb-20	2.29	0.696	2.34	0.711
TUFROC	4.88	1.117	5.13	1.181
PICA	5.94	1.591	5.82	1.557
Genesis	1444		5.51	1.298
Carbon phenolic	8.70	13,084	8.76	13.167

- Lift down (overshoot) trajectories are worst-case from standpoint of TPS thickness requirements
- Assumed all materials are opaque for these analyses
- Low density composites provide the lightest TPS solution (unless surface recession for undershoot trajectories leads to unacceptable shape change)

^{*}Zero margin thicknesses based on nominal stag point heating

Background - TPS performance uncertainties

Space Technology Division

Thermal Protection Materials & Systems Branch

- CN radiation in a narrow band in the UV with peak at 3800 Å
- Interaction of CN radiation with low-density, porous TPS materials was of concern
 - Laser studies (80s)
 demonstrated degradation in
 material performance at shorter
 wavelengths (larger absorption
 length)
 - ◆ Potential in-depth absorption ⇒ spallation could significantly degrade material performance

Due to these uncertainties, a TPS material known to be opaque at these wavelengths (TUFROC) was selected as the baseline forebody TPS for the systems analysis study (at a significant mass penalty)

Huygens Support

Space Technology Division

- Huygens Delta Flight Acceptance Review (Cannes, Feb. 2004)
 - NASA Ames offered to test AQ60 (Huygens forebody TPS material) at UV wavelengths and relevant heat fluxes
 - Ames was in-process of acquiring a mercury-xenon lamp for such purposes under In-Space Propulsion program sponsorship
 - ESA accepted the offer and Alcatel/EADS provided samples
 - Tests demonstrated that none of the low-density TPS material candidates absorbed UV radiation below the surface
 - NASA radiative heating predictions for Huygens entry significantly different than what ESA employed for TPS design
 - ESA/NASA collaboration on radiation modeling
 - Agreement on the best models in Nov. 2004
 - NASA Ames shock tube data (EAST) demonstrated that actual radiative heating rates much lower than predicted by any of the models (Jan. 2005)

Updated aerocapture analysis

Space Technology Division

Thermal Protection Materials & Systems Branch

- Revised stag point heating
 - Considered same trajectories as 2002 systems analysis study
 - Minimum density (maximum CH₄) atmosphere only
 - Wright estimated radiative heating based on EAST shock tube data
 - Significant uncertainties in heating still persist
 - Wright recommended adding 30% margin to convective heating and 200% margin on radiative heating

CBE w/margins

Updated aerocapture analysis

Space Technology Division

- Revised stag point TPS requirements
 - Based on UV tests of TPS materials, low-density ablators primary candidates
 - Re-evaluated TPS thickness requirements using updated heating estimates
 - Same substructure, initial conditions, etc.
 - Added EADS' AQ60 and Norcoat-Liege to material candidates

Summary and conclusions

Space Technology Division

- Uncertainties about in-depth absorption of UV radiation resolved with mercury-xenon lamp tests
 - Low-density ablators viable candidates for Titan aerocapture and/or entry
- EAST shock tube tests demonstrated that CN radiation in Titan atmosphere is significantly lower than previous estimates
- TPS requirements for Titan aerocapture re-evaluated using updated estimates of heating
 - Low density ablators are most attractive candidates but areal weight requirements only slightly lower than results from 2002 systems analysis study despite much lower radiative heating rates
 - Ablators are more efficient at higher heating rates where ablation consumes energy
 - Use of low-density ablators provides significant mass savings.
 - 73-98 kg in comparison to baseline TPS in 2002 systems analysis study